

Leading Thermal Analysis -

Einflussfaktoren für verlässliche DSC- und c_p-Messungen

<u>Senol Gezgin</u>, Dr. Alexander Schindler Arbeitskreis Thermophysik 03. April 2017

Agenda

Einführung

- Bedeutung der DSC Grundgleichung

Einflussfaktoren in Bezug auf die Empfindlichkeit

- Empfindlichkeit in Abhängigkeit der Temperatur
- Tiegelart bzw. Material
- Einfluss der Tiegeldeckel auf die Empfindlichkeit in Abhängigkeit der Temperatur.
- Einfluss der Gasatmosphäre in Abhängigkeit der Temperatur

Kombinierte Messunsicherheit

- Bedeutung der spezifischen Wärmekapazität (cp)
- Messunsicherheiten in Bezug auf cp-Messungen
- Reproduzierbarkeit von Basislinien sowie cp-Standard (Saphir)
- Einflussfaktor im Bezug auf das DSC-Signal bzw. Signal-Hub
- Einflussfaktor $m \times c_p$ von Probe und Standard

Zusammenfassung

Bedeutung der DSC Grundgleichung

Masse X Spezifischen Wärmekapazität X Kalorimetrische Empfindlichkeit X Heizrate

Empfindlichkeit in Abhängigkeit der Temperatur

NETZSCH DSC 404 (3 Unterschiedliche Instrumente/Sensoren), Argon, Pt+Al₂O₃-Liner

B. Wilthan et al., Uncertainty budget for high temperature heat flux DSCs, J Therm Anal Calorim (2014) 118:603-611

NETZ5CH

Einflussfaktor Tiegelmaterial

NETZSCH

	Pt/Rh	Al ₂ O ₃	AI (up to 600°C)	Pt + Al ₂ O ₃	$\begin{array}{c} Al_2O_3\\ +\ Y_2O_3 \end{array}$	С
Polymers	✓	✓	(first choice)	~	✓	~
Clays	✓	√*	√ **	√*	√*	no
Minerals	✓	√*	√ **	√*	√*	no
Oxide Ceramics	~	√*	√ **	√*	√*	no
Salts	✓	no	√ **	no	no	no
Metals	no	✓	no	✓	✓	no
Glasses	✓	no	√ **	no	no	√*
C contain. materials	✓*	√*	√ **	√*	✓*	~
Inorganic	✓*	√*	√*	√*	✓*	√ *

Kompatibilität

- ✓** T max 600 °C
 - Wechselwirkung im hohen
 T-Bereich möglich

Ist der Tiegel kompatibel mit meiner Probe? Wenn ja, bis zu welcher Temperatur (z.B. (vermeiden vom Aufschemlzen des Tiegels und somit mögliche Legierungsbildung!)

Welcher Tiegel bietet die beste DSC Performance? (z.B. Pt/Rh oder Pt/Rh mit Al_2O_3 -liner besser geeignet als pure Al_2O_3 Tiegel (Verlust von Wärmestrahlung im höheren T-Bereich >600°C)

Einflussfaktor Tiegelmaterial

Einflussfaktor Tiegelmaterial

Einflussfaktor Tiegeldeckel

Einflussfaktor Tiegeldeckel Messungen mit Hochtemperatur-DSC DSC /(µV/mg) <u>Gold</u> ↓ exo Messung mit Deckel 1.6 Onset: 1063.3 °C Area: 29.75 µVs/mg 1.4 1.2 ca. 26% 1.0 Messung ohne Deckel Onset: 1063.9 °C Area: 23.63 µVs/mg 0.8 0.6 0.4 0.2 0.0 900 950 1000 1050 1100 Temperature /°C

AKT 2017 | Analysieren & Prüfen | 03. April 2017

Einflussfaktor Tiegeldeckel

Einflussfaktor Aluminiumoxid Unterlegscheibchen NETZSCH

Um ein Ankleben der Pt-Tiegel auf der Sensorfläche zu vermeiden, wird bei Messungen oberhalb 1200°C empfohlen dünne Al₂O₃-Scheibchen zwischen Sensorfläche und Tiegelboden zu plazieren.

Mit Scheibchen zwischen Sensor und Tiegel (ø=6.8 mm, h=0.2mm)

Einfluss der Al₂O₃ Unterlegscheibchen auf die Empfindlichkeit NETZSCH DSC 404, Pt+Al₂O₃ washer, Helium Atmosphäre

M. Luisi et al., Influence of purge gas and spacers on uncertainty of high temperature heat flux DSCs, J Therm Anal Calorim (2015) 119:2329-2334

Empfindlichkeit von Type S Sensoren: Einfluss der Gasatmosphäre

NETZSCH DSC 404 (3 Unterschiedliche Instrumente/Sensoren), Pt+Al₂O₃-Liner

M. Luisi et al., Influence of purge gas and spacers on uncertainty of high temperature heat flux DSCs, J Therm Anal Calorim (2015) 119:2329-2334

Einflussfaktor Gasatmosphäre (Reinheit 5.0) NETZSCH

Agenda

NETZSCH

Einführung

- Bedeutung der DSC Grundgleichung
- Einflussfaktoren in Bezug auf Empfindlichkeit
 - Empfindlichkeit in Abhängigkeit der Temperatur
 - Tiegelart bzw. Material
 - Einfluss der Tiegeldeckel in Abhängigkeit der Temperatur
 - Einfluss der Gasatmosphäre in Abhängigkeit der Temperatur

Kombinierte Messunsicherheit

- Bedeutung der spezifischen Wärmekapazität (cp)
- Messunsicherheiten in Bezug auf cp-Messungen
- Reproduzierbarkeit von Basislinien sowie c_p-Standard (Saphir)
- Einflussfaktor im Bezug auf das DSC-Signal bzw. Signal-Hub
- Einflussfaktor $m \times c_p$ von Probe und Standard

Zusammenfassung

- Beispielmessungen

Bedeutung der spezifischen Wärmekapazität (c_p) Anwendungsbeispiel

Die Berechnung der Thermopyhisikalischen Eigenschaften (*T*hermal *P*hysical *P*roperties (*TPP*), dient dazu um die Wärmeleitfähigkeit [λ] zu bestimmen. Hierbei wird folgende Gleichung verwendet:

 $\lambda(\mathsf{T}) = \rho(\mathsf{T}) \cdot \mathbf{c_p}(\mathsf{T}) \cdot \mathsf{a}(\mathsf{T})$

Methoden zur Berechnung der spezifischen Wärmekapazität (c_p)

DSC-Grundgleichung

$$DSC = m \cdot cp \cdot sensitivity \cdot HR$$
$$[\mu V] = mg \cdot \frac{J}{g \cdot K} \cdot \frac{\mu V}{mW} \cdot \frac{K}{s}$$

Die spezifische Wärme einer unbekannten Probe kann auf Basis der

Ratio Methode

$$c_{p \text{ sample}}(T) = \frac{m_{cal}}{m_{sample}} \cdot \frac{(V_{sample}(T) - V_B(T))}{(V_{cal}(T) - V_B(T))} \cdot cp_{cal}(T)$$
ASTM /DIN Methode

$$c_{p \text{ sample}}(T) = \frac{m_{cal}}{m_{sample}} \cdot \frac{(V_{sample}(T) - VB(T))^{*}}{(V_{cal}(T) - V_B(T))^{*}} \cdot cp_{cal}(T)$$

* beinhaltet eine lineare Driftkorrektur ($a+b \cdot T$) basierend auf den Isothermsegmenten am Anfang und am Ende eines dynamischen Segmentes.

N ETZ5

Reproduzierbarkeit von Basislinen sowie c_p-Standard

Reproduzierbarkeit von Basislinen sowie c_p-Standard

Einflussfaktor im Bezug auf das DSC-Signal bzw. Signal-Hub

NETZSEH

1.2 - 100.0 °C, 0.927 J/(g*K)

300

100.0 °C, 0.906 J/(g*K)

200

452.3 °C, 1.156 J/(g*K)

600

700

452.3 °C, 1.151 J/(g*K)

500

Temperature /°C

400

Kombinierte Messunsicherheit

Einflussfaktor im Bezug auf das DSC-Signal bzw. Signal-Hub

100.0 °C, 0.910 J/(g*K)

100

0.8

0.6

0.4

1000

the for the second

800

966.8 °C, 0.982 J/(g*K)

900

Kombinierte Messunsicherheit Einflussfaktor $m \times c_p$ von Probe und Standard

Ideal ist es, den Wärmestrom (**DSC-Signal in \muV**) einer Probe so equivalent wie möglich an den Wärmestrom des Standards anzupassen.

ETZ5CH

Ergebnisse von c_p-Messungen (an W, Ni and Graphit) und deren (kombinierte) Messunsicherheiten.

NETZSCH DSC 404 (3 Unterschiedliche Instrumente/Sensoren, Rh bzw. Pt-Öfen), Pt+Al₂O₃-liner

B. Wilthan et al., Uncertainty budget for high temperature heat flux DSCs,

J Therm Anal Calorim (2014) 118:603-611

Weitere Daten zur kombinierten Messunsicherheit von c_p an Y₂O₃ Sintermaterial.

Genauigkeit einer typischen c_p-Messung

DSC 404 F1 Pegasus®	
Crucible:	Graphite
Sample mass:	370,00 mg
Reference mass:	42,00 mg
atm.:	Argon
flow rate:	50 ml/min
heating rate:	20 K/min

AKT 2017 | Analysieren & Prüfen | 03. April 2017

Zusammenfassung

- Auf die Tiegelart achten (z.B. hinsichtlich DSC-Performance, chem. Beständigkeit zur Vermeidung von Wechselwirkung).
- Verwendung von Tiegel Deckeln bei DSC-Messungen!
- Die Auswahl der Gasatmosphäre bzw. deren Reinheit, OTS
- Überprüfung der Messunsicherheit durch Überprüfung der Reproduzierbarkeit.
- Anpassung/Optimierung geeigneter Parameter (z.B. m × c_p von Probe und Standard, Heizrate).

Vielen Dank !!